// JSON-LD for Wordpress Home, Articles and Author Pages. Written by Pete Wailes and Richard Baxter. // See: http://builtvisible.com/implementing-json-ld-wordpress/

Archive for October, 2011

The Cognitive Corporation™ – Effective BPM Requires Data Analytics

Tuesday, October 25th, 2011

The Cognitive Corporation is a framework introduced in an earlier posting.  The framework is meant to outline a set of general capabilities that work together in order to support a growing and thinking organization.  For this post I will drill into one of the least mature of those capabilities in terms of enterprise solution adoption – Learn.

Business rules, decision engines, BPM, complex event processing (CEP), these all invoke images of computers making speedy decisions to the benefit of our businesses.  The infrastructure, technologies and software that provide these solutions (SOA, XML schemas, rule engines, workflow engines, etc.) support the decision automation process.  However, they don’t know what decisions to make.

The BPM-related components we acquire provide the how of decision making (send an email, route a claim, suggest an offer).  Learning, supported by data analytics, provides a powerful path to the what and why of automated decisions (send this email to that person because they are at risk of defecting, route this claim to that underwriter because it looks suspicious, suggest this product to that customer because they appear to be buying these types of items).

I’ll start by outlining the high level journey from data to rules and the cyclic nature of that journey.  Data leads to rules, rules beget responses, responses manifest as more data, new data leads to new rules, and so on.  Therefore, the journey does not end with the definition of a set of processes and rules.  This link between updated data and the determination of new processes and rules is the essence of any learning process, providing a key function for the cognitive corporation.


Expanding on “Code Reviews Trumps Unit Testing, But They Are Better Together”

Tuesday, October 18th, 2011

Michael Delaney, a senior consulting software engineer at Blue Slate, commented on my previous posting.  As I created a reply I realized that I was expanding on my reasoning and it was becoming a bit long.  So, here is my reply as a follow-up posting.  Also, thank you to Michael for helping me think more about this topic.

I understand the desire to rely on unit testing and its ability to find issues and prevent regressions.  For TDD, I’ll need to write separately.  Fundamentally I’m a believer in white box testing.   Black box approaches, like TDD, seem to be of relatively little value to the overall quality and reliability of the code.  Meaning, I’d want to invest more effort in white box testing than in black box testing.

I’m somewhat jaded, being concerned with the code’s security, which to me is strongly correlated with its reliability.  That said, I believe that unit testing is much more constrained as compared to formal reviews.  I’m not suggesting that unit tests be skipped, rather that we understand that unit tests can catch certain types of flaws and that those types are narrow as compared to what formal reviews can identify.


Code Reviews Trump Unit Testing , But They Are Better Together

Tuesday, October 11th, 2011

Last week I was participating in a formal code review (a.k.a. code inspection) with one of our clients.  We have been working with this client, helping them strengthen their development practices.  Holding formal code reviews is a key component for us.  Part of the formal process we introduced includes reviewing the unit testing results, both the (successful) output report and the code coverage metrics.

At one point we were reviewing some code that had several error handling blocks that were not being covered in the unit tests.  These blocks were, arguably, unlikely or impossible to reach (such as a Java StringReader throwing an IOException).  There was some discussion by the team about the necessity of mocking enough functionality to cover these blocks.

Although we agreed that some of the more esoteric error conditions weren’t worth the programmer’s time to mock-up, it occurred to me later that we were missing an important point.  What mattered was that we were holding a formal code review and looking at those blocks of code.

Let me take a step back.  In 1986, Capers Jones published a book entitled Programming Productivity.  Although dated, the book contains many excellent points that cause you think about how to create software in an efficient way.  Here efficiency is not about lines of code per unit of time, but more importantly, lines of correct code per unit of time.  This means taking into account rework due to errors and omissions.

One if the studies presented in the book relates to identifying defects in code.  It is a study whose results seem obvious when we think about them.  However, we don’t always align our software development practices to leverage the study’s lessons and maximize our development efficiency.  Perhaps we believe that the statistics have changed due to language construct, experience, tooling and so forth.  We’d need similar studies to the ones presented by Capers Jones in order to prove that, though.

Below are a few of the actions from the book’s study of defect detection approaches.  I’ve skipped the low end and high-end numbers that Caper’s includes, simply giving the modes (averages) which are a good basis for comparison:

Defect Identification Rates Data Table
Defect Identification Rates Graph