Semantics in the Cognitive Corporation™ Framework
Tuesday, August 14th, 2012When depicting the Cognitive Corporation™ as a graphic, the use of semantic technology is not highlighted. Semantic technology serves two key roles in the Cognitive Corporation™ – data storage (part of Know) and data integration, which connects all of the concepts. I’ll explore the integration role since it is a vital part of supporting a learning organization.
In my last post I talked about the fact that integration between components has to be based on the meaning of the data, not simply passing compatible data types between systems. Semantic technology supports this need through its design. What key capabilities does semantic technology offer in support of integration? Here I’ll highlight a few.
Logical and Physical Structures are (largely) Separate
Semantic technology reduces the tie between the logical and physical structures of the data versus a relational database. In a relational database it is the physical structure (columns and tables) along with the foreign keys that maintain the relationships in the data. Just think back to relational database design class, in a normalized database all of the column values are related to the table’s key.
This tight tie between data relationships (logical) and data structure (physical) imposes a steep cost if a different set of logical data relationships is desired. Traditionally, we create data marts and data warehouses to allow us to represent multiple logical data relationships. These are copies of the data with differing physical structures and foreign key relationships. We may need these new structures to allow us to report differently on our data or to integrate with different systems which need the altered logical representations.
With semantic data we can take a physical representation of the data (our triples) and apply different logical representations in the form of ontologies. To be fair, the physical structure (subject->predicate->object) forces certain constrains on the ontology but a logical transformation is far simpler than a physical one even with such constraints.